Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Food Chem ; 370: 130830, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1377714

ABSTRACT

COVID-19 is having a far-reaching negative impact on global economic and social development. One of the challenges arising from the pandemic is ensuring food security, especially with respect to cold chain food. Given the current situation of high contagion and large numbers of infected people, the perspective briefed emergency management measures of cold chain food, compared the development of accurate and rapid detection methods of COVID-19 and hazards in foods. In addition, we proposed three-dimensional-printing of foods as a promising candidate for ensuring food security during the current pandemic because it uses locally-obtained raw materials and does not need long-distance cold chain transportation.


Subject(s)
COVID-19 , Pandemics , Food Security , Food Supply , Humans , SARS-CoV-2
2.
Crit Rev Food Sci Nutr ; 62(30): 8454-8466, 2022.
Article in English | MEDLINE | ID: covidwho-1240848

ABSTRACT

Rice bran protein (RBP) is a plant protein obtained from rice bran, a byproduct produced during rice milling process. It has been proved to be a high quality protein due to containing all of the essential amino acids and the content closing to the FAO/WHO recommended ideal pattern. Recent studies indicated that RBP and rice bran protein hydrolysates (RBPH) served variety biological functions. In this review, we summarized the classical functions of RBP and RBPH mediating antioxidant activity, chronic diseases prevention (such as antihypertensive effect, anti-diabetic effect, cholesterol-lowering activity), and anti-cancer effect. We also proposed their potential novel functions on anti-obesity effect, attenuating sarcopenia, promoting wound healing. Furthermore, the potential benefit to coronavirus disease 2019 (COVID-19) patients was put forward, which might provide new strategy for development and utilization of RBP and RBPH.


Subject(s)
Oryza , Plant Proteins , Protein Hydrolysates , Humans , Antioxidants/pharmacology , Oryza/chemistry , Plant Proteins/chemistry , Protein Hydrolysates/chemistry , Nutritive Value
3.
Front Pharmacol ; 11: 615287, 2020.
Article in English | MEDLINE | ID: covidwho-1133947

ABSTRACT

During the outbreak of the novel coronavirus disease (COVID-19), the Chinese government took a series of public health measures to tackle the outbreak and recommended six traditional Chinese medicine (TCM) evolved formulas, collectively referred to as "3-drugs-3-formulas", for the treatment. In this prospective article, we will discuss how these six formulas evolved from TCM and what their underlying mechanisms of actions may be by evaluating the historical usage of the component formulas, the potential targeted pathways for the individual herbs used by STAR (signal transduction activity response) database from our laboratory, and the pathogenesis of COVID-19. Five of the six recommended formulas are administered orally, while the sixth is taken as an injection. Five classic categories of herbs in the six formulas including "Qing-Re", "Qu-Shi", "Huo-Xue", "Bu-Yi" and "Xing-Qi" herbs are used based on different stages of disease. All five oral formulas build upon the core formula Maxingshigan Decoction (MD) which has anti-inflammatory and perhaps antiviral actions. While MD can have some desired effects, it may not be sufficient to treat COVID-19 on its own; consequently, complementary classic formulas and/or herbs have been added to potentiate each recommended formula's anti-inflammatory, and perhaps anti-renin-angiotensin system (RAS)-mediated bradykinin storm (RBS) and antiviral effects to address the unique medical needs for different stages of COVID-19. The key actions of these formulas are likely to control systemic inflammation and/or RBS. The usage of Chinese medicine in the six formulas is consistent with the pathogenesis of COVID-19. Thus, an integrative systems biology approach-combining botanical treatments of conventional antiviral, anti-inflammatory or anti-RBS drugs to treat COVID-19 and its complications - should be explored.

SELECTION OF CITATIONS
SEARCH DETAIL